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1 SUMMARY
The operational objective of this project is to demonstrate that a small, lightweight, field-deployable,
low-cost quantum algorithm (e.g. Grover’s search algorithm) is feasible using existing technology.
We have designed such optical elements and have begun a collaboration with Leonid Glebov of the
The College of Optics & Photonics (CREOL) to manufacture such gates for experimental demon-
stration of the results under this effort. Our technical objective of this project was the simulation
and design of fundamental quantum logic gates, each encoded as a multiplexed volume hologram
(VH) within a single piece of Photo-Thermal Refractive (PTR) glass. The approach we used to
accomplish this is (1) the simulation of a volume hologram on Air Force Research Laboratory
(AFRL) General Purpose Graphical Processing Unit (GP/GPU) machines using a split-operator
method, (2) mathematical modeling based on extensions of the coupled-mode theory, as well as
(3) verification and visualization (V&V).

2 INTRODUCTION
Various approaches have been proposed for quantum computation. The most familiar of these is
the quantum circuit model (QCM) [1]. Here the challenge is to (1) simulate those families of uni-
tary operations on n quantum bits (qubits) that scale polynomially in n by small quantum circuits,
and (2) project the readout onto the computational basis and measure the “output state.” One appli-
cation of this quantum circuit model involves linear optical quantum computing (LOQC) [2] and
one-way quantum computing (OWQC) [3]. These are also known as cluster state quantum com-
puting (CSQC) [4]. The essential feature of these approaches involve either a non-linear measuring
process and/or the preparation of a highly-entangled n-qubit initial computational state. Here a se-
quence of measurements are made, projected onto one or another of the mutually-unbiased bases
(MUBs). In our research we examined the utility of higher dimensional state spaces, i.e quantum d-
level states (qudits), for LOQC. In addition to examining the potential strengths and weaknesses of
qudit LOQC we extend our previous developments [5] in optical volume holography and designed
and simulated practical single-photon, single-optical elements for qudit MUB-state quantum in-
formation processing. This includes the design of accurate MUB sorters and other relevant qudit
unitary operators for LOQC. Our designs are based on coupled-mode analysis and its extensions;
however, this approximation was further verified by numerical modeling. We developed a split-
operator method running on AFRL GP/GPU computers.

An increase in the dimension of state space for quantum information processing (QIP) can
increase tolerance to bit error rate (BER) while also increasing its bandwidth. The potential of
extending photon-based QIP to higher dimensions was made popular in 1992 when Allen et al.
[8] showed that Laguerre-Gaussian light beams possessed a quantized orbital angular momentum
(OAM) of ℏ per photon. In 1983 Miller and Wheeler were the first to introduce fundamental
quantum experiments using photons in OAM quantum states [9]. This opened up an arbitrarily
high dimensional quantum space to a single photon [10]. Following these discoveries Mair et al.
[11,12] unequivocally demonstrated the quantum nature of photon OAM by showing that pairs of
OAM photons can be entangled using parametric down conversion. Shortly thereafter, Molina-
Terriza et al. [13] introduced a scheme to prepare photons in multidimensional vector states of
OAM commencing OAM QIP.

While photons with specific values of OAM have been emphasized in the literature we can
equally well utilize any other set of orthogonal basis functions for higher-dimensional quantum
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key distribution (QKD). While OAM states respect azimuthal symmetry, linear momentum (LM)
states respect rectilinear symmetry. Independent of the representation we use, the MUB states
will ordinarily be modulated in both amplitude and phase. Recently a practical method has been
demonstrated to produce such MUB states using computer-generated holography with a single
spatial light modulator (SLM) [6].

A significant obstacle for quantum computing with qudits (d ≥ 3) has been an efficient and
practical quantum state sorter for photons whose complex fields are modulated in both amplitude
and phase. We propose here such a sorter based on a multiplexed thick hologram, constructed e.g.
from PTR glass, and demonstrate how such elements can be used to construct a practical quantum
gate. We will validate this approach using coupled-mode theory with parameters consistent with
PTR glass and simulate and validate the holographic sorter numerically. Our models will assume
both two and three-dimensional state space spanned by three tilted plane waves. We extend our
analysis to three dimensions, as this is one more dimension than available with photon polarization
states. We will explore the utility of such a sorter for broader QIP and we believe that its impact
can be substantial to quantum computing.

3 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Four Metrics and Milestones and Accomplishments.

We addressed four primary metrics throughout this research effort. First, (Metric 1) we devel-
oped a split-operator code to provide an explicit simulation (split-operator method) and analytic
model (coupled-mode theory) of a fundamental quantum logic gate recorded in a single piece
of PTR glass. In particular, we designed and solved via coupled-mode theory the function of a
volume-holographic Pauli-z gate as well as the quantum NOT gate and a quantum-state sorter.
These coupled-mode results were further verified with a split operator method as well as a finite-
difference time-domain (FDTD) code from Massachusetts Institute of Technology’s (MIT’s) MIT
electromagnetic equation propagation code (Meep). Secondly, (Metric 2) all simulations were
suitably benchmarked against analytic and known solutions and our simulations were run on
AFRL high performance computing (HPC) GP/GPU and message passing interface (MPI) plat-
forms. Our undergraduate student (UG) student (Chris Tison) worked under the summer intern
program at AFRL’s Emerging Computing Technology Group (RITC) and migrated our codes to
the AFRL/RITC Nvidia GPU cluster. We collaborated with Leonid Glebov’s group at the Univer-
sity of Central Florida. Together we ascertained that multiplexing with high fidelity was indeed
possible in photo-thermal refractive (PTR) glass. Furthermore, the CREOL research group de-
termined that it takes roughly one millimeter of PTR glass per exposure in order to achieve high
fidelity multiplexed gratings. Furthermore, PTR holograms can approach thicknesses of 2 cm.
Therefore, we can, in principle, compute in a 20-dimensional quantum state space. This limits
this technology to a linear optical quantum computer such that each quantum gate has to use less
than five or fewer qubits. It is well known that this technology is not scalable; however, there may
be many quantum information processing tasks that may require a relatively small (≤ 5) amount
of bits (i.e. quantum error correction). These findings, together with our designs, models, and
simulations, demonstrate that a small, lightweight, field-deployable, low-cost quantum algorithm
(e.g. Grover’s search algorithm) is feasible using existing technology. Finally (Metric 4), we have
a paper accepted for the March 2011 International Society for Optics and Photonics (SPIE) De-
fense, Security and Sensing meeting in Quantum Information and Computation IX. (Paper number

2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



8057-27, 29 Aug 2011.). In this paper the simulation of a fundamental quantum logic gate will be
submitted for public release and publication in a refereed journal.

We met or exceeded all four metrics and milestones described above. In particular, we designed
and simulated a high-fidelity volume hologram (VH) qubit logic gate. Our simulations were done
both at Florida Atlantic University (FAU), and at AFRL during the summer by an FAU UG student
(Chris Tison). We leveraged this AFRL grant and received approval from FAU to purchase a
7 teraflop GPU computer for student training purposes. This Nvidia computer is similar to the
Nvidia machines used at AFRL. This enabled our student to immediately show progress under the
summer internship at AFRL. In order to continue this research the FAU Principal Investigator (PI)
and United States (US) student were given H-token access to AFRL compute facilities. Both the
PI and student (C. Tison) spent the summer at AFRL’s Information Directorate (RI). During this
grant period we successfully provided a GPU simulation of a VH quantum gate using our paraxial
split operator code. As a follow-on to this grant, we presented a specific design for the fabrication
of a PTR qubit VH at a December 2010 kickoff meeting at CREOL with Leonid Glebov’s group.

During this effort we analyzed two independent sets of quantum states of a photon that would
allow us to explore higher-dimensional state spaces. One quantized the transverse LM (tilt of the
wavefront) of the photon while the other quantized the photon’s OAM. We extensively analyzed the
efficiency of OAM verses LM volume holographic gratings and concluded that higher efficiencies
could be reasonably achieved with LM states thus arguing against the use of photons with OAM.

3.2 Publications Under this Effort

There are three publications in refereed journals associated to this effort, one poster contribution,
and three seminars. The publications are as follows:

1. W. Miller, “Efficient Photon Sorter in a High Dimensional State Space,” Journal Quantum
Information and Computation, Vol. 11, No. 3&4 (2011) 0313.

2. SPIE Defense, Security and Sensing paper accepted. P. Alsing, G. Kreymerman, J. Mc-
Donald, W. Miller, and C. Tison, “Quantum Computing in a Piece of Glass,” in Quantum
Information and Computation IX. Paper number 8057-27, 29 Aug 2011.

3. P. Alsing, G. Kreymerman, W. Miller and C. Tison, Volume Holographic Gratings for Pho-
tons with Orbital Angular Momentum, in preparation.

4 RESULTS AND DISCUSSION

4.1 Design of Optical Quantum Computing CNOT Gate

Here we provide a specific design of a quantum controlled not (CNOT) gate in PTR glass. We
could have chosen any 2 or 4-qubit gates, but chose this one to illustrate our design as it is a
canonical example found in the literature. The CNOT gate is a 2-qubit gate. This is a 2 × 2, or
4-dimensional state space. This state space can be constructed as a product space of qubits, e.g.
by utilizing the polarization states of two correlated photons. However, in a higher-dimensional
state space such as that afforded by the LM photon states the CNOT gate can be constructed with
a single photon. In our design, we choose four independent plane waves lying on the cone shown
in Figure 1. We associate these independent transverse LM modes with the orthogonal quantum
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state vectors, ∣a⟩, ∣b⟩, ∣c⟩ and ∣d⟩, so that any state vector, ∣ ⟩ in the 4-dimensional state space can
be written as a linear superposition of these states,

∣ ⟩ = �∣a⟩+ �∣b⟩+ ∣c⟩+ �∣d⟩, (1)

with,
∣a∣2 + ∣b∣2 + ∣c∣2 + ∣d∣2 = 1. (2)

Each of our basis states can be expressed in matrix notation,

∣a⟩ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , ∣b⟩ =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , ∣c⟩ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , and ∣d⟩ =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (3)

Then the CNOT gate can be expressed by the following unitary transformation on these basis
vectors:

CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (4)
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Figure 1: Volume holographic design of the 4-dimensional CNOT gate in PTR glass. The gate can
be constructed by a stack of 4 LM gratings, or by a stack of two multiplexed gratings.

We let the z-axis be orthogonal to the face (x-y plane) of the hologram. The four volume
holographic gratings are recorded by a suitable superposition of the set of four signal plane waves,

⟨r∣a⟩ = exp (ika ⋅ r) , ⟨r∣b⟩ = exp (ikb ⋅ r) , ⟨r∣c⟩ = exp (ikc ⋅ r) , and ⟨r∣d⟩ = exp (ikd ⋅ r) ,
(5)

and four reference waves,

⟨r∣ra⟩ = exp (ikra ⋅ r) , ⟨r∣rb⟩ = exp (ikrb ⋅ r) , ⟨r∣rc⟩ = exp (ikrc ⋅ r) , and ⟨r∣rd⟩ = exp (ikrd ⋅ r) ,
(6)

as shown in Fig. 1.
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The hologram is recorded so that each row of the unitary matrix of the CNOT gate (or any
unitary gate of our choice) is used to generate its own volume holographic grating. For a 2-qubit
gate such as the CNOT gate we would ordinarily require four recordings; however, since the first
two bits involve just an identity matrix we need only two layers to transform the signal states into
the desired reference states. In addition to one holographic recording per dimension of the state
space, we also require the conjugate of each grating (two in the case of the CNOT gate) in order
to transform the diffracted reference waves back into the desired signal states. In particular, the
CNOT-gate is constructed from four holographic gratings stacked together as illustrated in Fig. 1.
In particular, this can be achieved by the following four stacked gratings:

1. the first grating is recorded with the two coherent plane waves corresponding to states ∣c⟩
and ∣rc⟩ ;

2. the second grating is recorded with the two coherent plane waves corresponding to states ∣d⟩
and ∣rd⟩ ;

3. the third grating is recorded with the two coherent plane waves corresponding to states ∣rd⟩
and ∣d⟩ ; and

4. the fourth grating is recorded with the two coherent plane waves corresponding to states ∣rc⟩
and ∣c⟩ .

None of the four gates diffract states ∣a⟩ or ∣b⟩. The first two gratings redirect the two signal states
∣c⟩ and ∣d⟩ into ∣rc⟩ and ∣rd⟩ according to the Pauli x-gate,

X̂ =

(
0 1
1 0

)
, (7)

and is equivalent to the operator,

R̂1 = ∣a⟩⟨a∣+ ∣b⟩⟨b∣+ ∣rc⟩⟨c∣+ ∣rd⟩⟨d∣. (8)

The second two holograms are equivalent to the operator,

R̂2 = ∣a⟩⟨a∣+ ∣b⟩⟨b∣+ ∣d⟩⟨rd∣+ ∣c⟩⟨rd∣. (9)

Therefore, the combination of the four stacked volume holograms have the desired action – the
CNOT gate.

CNOT = R̂2 ⋅ R̂1 = ∣a⟩⟨a∣+ ∣b⟩⟨b∣+ ∣d⟩⟨c∣+ ∣c⟩⟨d∣. (10)

We have applied these principles to design a universal set of quantum gates.

4.2 The efficiency of an OAM and LM Volume Grating

We modeled the diffraction efficiency of a volume hologram constructed by the coherent recording
of (1) a Laguerre-Gaussian OAM beam aligned on axis, with (2) a plane reference wave as shown
in Fig. 2. Then let � be the angle between the normally-incident OAM beam and the tilted plane
reference wave. In particular, the hologram is recorded with the interference with reference wave
R and Laguerre-Gausian signal wave S+. In Fig. 3 we provide a color contour plot of the index of
refraction recorded into the emulsion at a depth of z = 500�. Again, this volume hologram was
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produced by the interference of (1) a normally-incident Laguarre-Gaussian signal state with unit
OAM, and (2) a plane wave tilted at an angle of � = �/14 with respect to the normal. This is well
within the paraxial approximation. The waist of the LG1

0 signal was 50� as is apparent from the
diameter of the contour plot of the index of refraction shown in Fig. 3.

S+ S_

R

Figure 2: OAM volume hologram sorter.

–100 –50 0 50 100–100

–50

0

50

100

X

y

Index (z~500)

0.998

1.000

1.002

Figure 3: Contour plot of the index of refraction.

With our split-operator code, and with our finite-difference time domain code we can ana-
lyze the electric field as it propagates through the volume hologram and is diffracted. This helps
us compare our results with other published runs and to understand the physical mechanism of
diffraction. In Fig. 4 we show the intensity of a Laguarre-Gaussian beam beam after propagating
through a matched OAM grating, i.e. the recording state is identical to the reconstruction state.
On the left we show the intensity for a pure Gaussian-beam grating (LG0

0) with vanishing OAM.
On the right in Fig. 4 we show the intensity for a beam with ℏ of OAM, LG1

0. Our paraxial code
reproduced earlier results, and predicts substantial qualitative differences for OAM gratings [16].

To measure the sorting efficiency of such a volume holographic grating, we assume that an
equal and random ensemble of signal states matched (S+) and mismatched (S−) is directed into
the volume hologram. We then count the bit error rate (BER). Here we define the BER as the error
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Figure 4: Intensity for (left) Gaussian-beam, (right) L = 1 LG beam.

rate in diffraction on a photon-by-photon level. In particular, the BER is the rate at which (1) the
mismatched states are diffracted incorrectly into R, plus (2) the rate at which the matched signal
state, which ordinarily should be diffracted, is actually not diffracted. With this measure of BER,
a completely random, i.e. useless sorter will yield a 50% BER, while a perfect sorter would give
0% BER. Fig. 5 shows the predicted BER of a volume-holographic OAM grating as a function
of the thickness, z, of the holographic emulsion as measured in units of wavelengths. Here the
grating is recorded using a pure Gaussian beam with no OAM. It is assumed to be reconstructed
with an equal ensemble of (1) matched Gaussian signals, and (2) a mismatched OAM signal with
L = {1, 2, 4, 8}ℏ. Here we plot four separate curves plotting the rate of error sorting the OAM
mismatch, ΔL = 1 (solid curve), ΔL = 2 (dotted curve), ΔL = 4 (dashed curve), and ΔL = 8
(dashed-dotted curve). The sorting improves, and the BER diminishes when the difference in OAM
of the signal and recording wave gets larger. For ΔL = 8 we can achieve greater than 90% sorting
efficiency.

0 500 1000 1500 20000.00

0.10
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Figure 5: Predicted bit error rate (BER).

4.3 Coupled-Mode Analysis of a Single OAM Grating

It is sufficient here to thoroughly analyze a single optical vortex grating and to exhibit its ability to
differentiate a photon with one value of OAM from another. Once this has been demonstrated, the
higher-dimensional sorters can be constructed by literally stacking or sequencing such gratings,
one for each basis state in a given MUB. This can also be accomplished by incoherently multi-
plexing each of the gratings into a single holographic substrate. We examined in this project a
holographic emulsion produced by the coherent interference of a unit-amplitude plane wave and
the unit amplitude OAM wave front corresponding to l = 1. The intensity of the interference
pattern (Fig. 2),
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I =
∣∣∣eik⃗r⋅r⃗ + ei(k⃗s⋅r⃗+l�)

∣∣∣
2

, (11)

will be recorded in the emulsion of bulk index n0 and depth of modulation �n ≪ n0 to yield an
index of refraction variation,

n = n0

(
1 +

Δn

n0

cos
((
k⃗r − k⃗s

)
⋅ r⃗ − l�

))
. (12)

We wish to find an approximate solution of the Helmholtz equation,

∇2E + k2E = 0. (13)

We solved this equation using three independent approaches; (1) a FDTD algorithm, (2) the split-
operator method to solve the paraxial wave equation, and (3) a semi-analytic approach using a
modified coupled-mode theory. The results of each of these approaches, as applied to both OAM
gratings as well as LM gratings were shown to be convergent and consistent (Figs. 4-6). Using
coupled-mode theory on an orbital angular momentum (OAM) volume Bragg grating one can
avoid large-scale numerical computations.

We consider here only two distinct modes of a y-polarized electric field E, one consisting
of a plane reference wave with wave vector k⃗r and one with orbital angular momentum (OAM)
propagating in the z-direction with wave vector k⃗s = kẑ and angular momentum l.

E = R eik⃗r⋅r⃗ + S ei(k⃗s⋅r⃗+l�) (14)

Here R(r⃗), S(r⃗) are the amplitudes of reference and signal modes, respectively.
As is customary with coupled-mode theory, we keep only these two modes in our calculation

and neglect the second derivative terms. Consequently the first term of Eq. 13 contains two primary
modes.

∇2E ≈

⎛
⎜⎜⎜⎝2i⃗ks ⋅ ∇S + 2i

l⃗

�2
⋅ (r⃗ ∧∇S)− l2

�2
S

︸ ︷︷ ︸
vanisℎes for large �

−�2S

⎞
⎟⎟⎟⎠ ei(k⃗s⋅r⃗+l�) + (15)

(
2i⃗kr ⋅ ∇R− �2R

)
eik⃗r⋅r⃗ + other modes (16)

Here we ignore the second-order derivatives and we defined an OAM vector,

l⃗ = lk̂s. (17)

We now examine the second term of the Helmholtz equation (Eq. 13) within the approximations
of coupled-mode theory.

k2E ≈ n2
(!
c

)2
E = n2k20 E. (18)

This expression can be approximated by neglecting the higher-order terms and keeping only our
primary two modes of Eq. 14.

k2E ≈ �2E + �2Δn

n0

(
S eik⃗r⋅r +Rei(k⃗s⋅r+l�) + otℎermodes

)
+O

(
Δn2

n2
0

)
(19)
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We now examine the second term of the Helmholtz equation (Eq. 13) within the ap-
proximations of coupled mode theory.

k2E ≈ n2
(ω
c

)2
E = n2k20 E. (18)

This expression can be approximated by neglecting the higher-order terms and keeping
only our primary two modes of Eq. 14.

k2E ≈ β2E + β2∆n

n0

(
S ei

~kr·r +Rei(
~ks·r+lφ) + othermodes

)
+O

(
∆n2

n2
0

)
(19)
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Figure 6: Farfield diffraction pattern of the solution of Eqns. 20 & 21.

Substituting the approximate expressions for ∇2E and k2E into Eq. 13, imposing the
Bragg matching condition (β =

∣∣∣~ks
∣∣∣ = k = n0k0) and setting the coefficients of each of

the two primary modes equal to zero we obtain the two coupled mode partial differential
equations for the amplitudes R and S.

i~ks · ∇S + 2i
~l

ρ2
· (~r ∧∇S)− l2

ρ2
S

︸ ︷︷ ︸
vanishes for large ρ

+β2

(
∆n

n0

)
R = 0, (20)

and

2i~kr · ∇R + β2

(
∆n

n0

)
S = 0. (21)

We immediately see that for large values of the cylindrical coordinate ρ � lambda these
equations reduce to the usual thick Bragg grating coupled mode equations as they should.
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Substituting the approximate expressions for ∇2E and k2E into Eq. 13, imposing the Bragg
matching condition (� =

∣∣∣⃗ks
∣∣∣ = k = n0k0) and setting the coefficients of each of the two pri-

mary modes equal to zero we obtain the two coupled-mode partial differential equations for the
amplitudes R and S.

i⃗ks ⋅ ∇S + 2i
l⃗

�2
⋅ (r⃗ ∧∇S)− l2

�2
S

︸ ︷︷ ︸
vanisℎes for large �

+�2

(
Δn

n0

)
R = 0, (20)

and

2i⃗kr ⋅ ∇R + �2

(
Δn

n0

)
S = 0. (21)

We immediately see that for large values of the cylindrical coordinate � ≫ � these equations
reduce to the usual thick Bragg grating coupled-mode equations as they should.

Again, in the case of the OAM grating, we solve numerically Eqs. 20-21 and compare these so-
lutions with the results of a fully 3-dimensional finite-difference time-domain solution of Maxwell’s
equations. For example, in Fig. 7 we display the results of a 3-dimensional simulation of an OAM
grating using the finite-difference time-domain code Meep. The grating we simulated is produced
by the interference of a normally-incident l = 1 optical vortex signal (S) and a reference plane
wave (R) tilted at 30 deg. The bulk index of refraction, n = 1, is modulated with amplitude,
Δn = 0.02. The hologram we simulated had transverse dimensions of 40 × 40 in units of wave-
length and was 30 wavelengths in thickness. We used a grid resolution of 20 grid points per
wavelength, which represents a computation grid with 800 × 800 × 600 grid points. The solid
(red) curve represents the fraction of the incident wave diffracted at 30 deg in the direction of the
reference beam, while the dashed curve represents the DC, or undiffracted, component. At approx-
imately 25 wavelengths into the emulsion the efficiency of the grating is greater than 92%. This
was the maximum resolution our cluster could simulate. However, based on similar 2-dimensional
calculations of Bragg gratings we would require higher resolutions in order for our numerical sim-
ulations to converge. Nevertheless, we expect slightly (a few percent) higher efficiencies than we
reported here.

Throughout this research we examined gratings with a broad range of depth of modulation
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in the index of refraction (Δn ∈ {0.1, ..., 0.0005}), and since Maxwell’s equations are scale-
invariant, we presented our solutions scaled in units of wavelength, � = 1.
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Figure 7: A 3D FTDT simulation of the OAM grating.

4.4 Coupled-Mode Analysis of the LM Sorter

For the detailed analysis of the coupled-mode analysis of the LM sorter, which is at the foundation
of the construction of the volume holographic quantum gates, the reader is referred to the recent
publication under this effort [5].

5 CONCLUSIONS
The work presented here proposes a lightweight, environmentally robust device to elicit any desired
quantum interference up to five qubits. It gives us a natural path for transitioning this research
beyond this one-year exploratory project to the following milestones:

1. Design and simulation of a VH quantum algorithm that can replace a complex multiple
optical element system with a single piece of PTR glass.

2. Explore the limits of multiplexing, i.e. answer the question, What is the highest dimensional
state space we can feasibly explore with existing technology?

3. Fabrication and Demonstration (AFRL, FAU, Colgate and CREOL) of a PTR VH-based
quantum algorithm.

4. Compare advantages of LM states verses OAM states.
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6 LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS
AFRL Air Force Research Laboratory
BER Bit Error Rate
CNOT Controlled Not
CREOL The College of Optics & Photonics
CSQC Cluster State Quantum Computing
FAU Florida Atlantic University
FDTD Finite Difference Time Domain
GP/GPU General Purpose Graphical Processing Units
HPC High Performance Computing
LM Linear Momentum
LOCQ Linear Optical Quantum Computer
Meep Massachusetts Institute of Technology’s Electromagnetic Equation Propagation Code
MIT Massachusetts Institute of Technology
MPI Message Passing Interface
MUB Mutually Unbiased Basis
OAM Orbital Angular Momentum
OWQC One-Way Quantum Computer
PI Principle Investigator
PTR Photo-Thermal Refractive
QIP Quantum Information Processing
QCM Quantum Circuit Model
QKD Quantum Key Distribution
qubit Quantum bit
qudit Quantum d-level system
RI Information Directorate
RITC Emerging Computing Technology
SLM Spatial Light Modulator
SPIE International Society for Optics and Photonics
UG Undergraduate
US United States
VH Volume Hologram
V&V Verification and Visualization
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